EFFECT OF TREATMENT INTERACTION WITH COLIFORM COUNTS OF YOGHURT VARIETES WITH NO PRESERVATIVES DURING STORAGE

PRIYA SUGANDHI GEDDAM* AND UMA MAHESWARI, K.²

DEPARTMENT OF FOODS AND NUTRITION POST GRADUATE RESEARCH CENTER PROFESSOR JAYASANKAR AGRICULTURAL UNIVERSITY (ANGRAU) RAJENDRANAGAR, HYDERABAD, INDIA

*E-mail.: priya.sugandhi777@gmail.com

ABSTRACT

Coliforms are easily destroyed in pasteurization process. Still the presence of coliforms in food products has been recognized for many years during processing and storage especially in milk products. The functional foods are having specific physiological effects. The present study been carried out to analyze the storage period, yoghurt varieties and storage period x yoghurt varieties with coliform count interaction during storage period of different yoghurt varieties with no preservatives or stabilizers. Dairy products play a potential role in the functional food market which carries probiotics, prebiotics and synbiotics which aid the gut by increasing the number of helpful bacteria and inhibiting harmful bacteria and may strengthen the body's immune response. Most coliforms do not cause disease, but can cause illness in people, especially vulnerable groups such as young children, the elderly and those with weakened immune systems. Two factorial analysis indicates that the coliform count showed significant treatment interaction effect with parameters storage period, yoghurt varieties and storage period X yoghurt varieties and concluded that significant interaction with parameters and storage period (p<0.05) was observed.

KEY WORDS: Coliforms, probiotics, synbiotics, Yoghurt varieties

INTRODUCTION

In view of increasing demand for functional food products, the industries are concentrating not only on the quantity but also ensuring safety and healthy products (Salinas, 1986). Also, the industrial scenario has considerably improved in terms of storage, transportation and commercialization of these products and also laid emphasis on the microbiological parameters such as coliform-free products (Tamime and Robinson, 2007). Coliform quantification allows the verification of raw milk quality and the processing efficiency. Coliform bacteria and yeasts metabolize diacetyl content of butter-milk, sour cream and other fermented products leading to yoghurt-like flavor (Wang and

Frank, 1981). Coliforms are a group of commonly found bacteria environment, including soil, surface water, vegetation and the intestinal tracts of warm-blooded animals. Coliform bacteria are not a traditional taxonomic group, like Salmonella. Escherichia or Listeria. Instead, the coliform bacteria are a collection of strains in the Enterobacteriaceae family. E. Enterobacter spp., Klebsiella spp. and Citrobacter spp. are the most common coliforms. They are rod-shaped Gramnegative non-spore forming organisms. They can ferment lactose with the production of acid and gas when incubated at 35-37°C. In dairy products, the process of pasteurization easily kills coliform

bacteria. Most coliforms do not cause disease, but a small percentage can cause illness in people, especially children, the elderly and those with weakened immune systems.

Yoghurt is a coagulated product obtained from pasteurized or boiled milk or concentrated milk, pasteurized skimmed milk and /or pasteurized cream or a mixture of two or more of these products by lactic acid fermentation through the action of Lactobacillus bulgaricus and Steptococcus thermophilus. It may also contain Bifidobacterium bifidus Lactobacillus acidophilus cultures and other cultures of suitable lactic acid producing harmless bacteria and if added a declaration to this effect shall be made on the label. Sensory attributes is a primary concern to determine shelf life in product development (Grunert et al., Among the important factors in dairy food products for inclusion of probiotics, their type, form and optimal population to derive beneficial effects, as well as production process effects on viability, stability during storage and possible changes in the sensory properties are considered important (Champagne et al., 2005).

after pasteurization, Even presence of coliforms in dairy products has been recognized for many years during processing storage. and These microorganisms are associated with the spoilage of yoghurts and milk based food products and reduces the shelf life. As a result, maintenance of the quality of the product is today's one of the major task to make consumer healthy. Coliforms count has been reported in many research studies also associated with different independent parameters and its relation. Hence, the present study been carried out to analyze the treatment interaction with coliforms during storage period has been studied.

MATERIALS AND METHODS **Preparation of yoghurts**

Yoghurts were developed with no preservatives or stabilizers and using starter culture as control, experimental varieties of yoghurts with Lactobacillus casei, Bifidobacterium bifidum along with oligosaccharides and extracted prebiotics in different combinations which are named as C = yoghurt starter culture (control); V1 = yoghurt starter culture + Lactobacillus casei17; V2 = yoghurt starter culture + *bifidum 231*; V3 = Bifidobacterium culture yoghurt starter + fructooligosaccharides; V4 = yoghurt starter culture + Lactobacillus casei17 + Fructo oligosaccharides; V5 = yoghurt starter culture + Bifidobacterium bifidum 231 + fructo oligosaccharides; V6 = voghurt starter culture + onion extracted prebiotics; V7 yoghurt starter culture Lactobacillus casei17 + onion extracted prebiotics; V8 = yoghurt starter culture + Bifidobacterium bifidum 231 + onion extracted prebiotics.

Shelf-life studies

These yoghurts were incubated at 37°C, followed by cooling at -4°C and stored for a period of 4 weeks in cold storage for the conducting shelf-life studies.

Evaluation of coliform count

Coliform count of all yoghurt samples was recorded after making a decimal serial dilution of each sample. MacConkey agar was used for coliform count. The plates were incubated at 37°C for coliform bacteria for a period of 24h for counting total microbial colonies.

MacConkey agar was used for the enumeration and detection of coliform media prepared bacteria. The was according to the manufacturer's instructions and the pour plates incubated for 24 ± 2 h at 37 ± 1 ⁰C. One ml of each voghurt sample was diluted in 9 mL sterile saline solution and 1ml of the diluted sample (10⁻⁷) was added in Petri dishes and incubated. Enumeration of coliform counts was done after 24h. Discrete colonies that developed on the plates

(overnight culture) were recorded as bacterial counts. The determination of contamination microbial voghurt variations was made by using the plate count agar for the total viable bacteria counts, MacConkey agar for the coliform counts, selective enriched media of MRS agar for the lactic acid bacteria counts, as outlined in compendium of methods for the microbiological examination of foods (AMPH, 1992) with some modifications. The colonies were counted on a colony counter and expressed as colony forming units per mL (CFU mL⁻¹).

Statistical analysis

factorial Two completed randomized design was carried out for independent variables storage period, yoghurt varieties, storage period x yoghurt varieties with mean values of dependent variable coliform count. Interaction between dependent and independent variables done by INDOSTAT software.

RESULTS AND DISCUSSION

Coliform counts yoghurt in varieties were nil as desirable in the yoghurt on the day of preparation (Table 1) and continued same till 21 days. However, in all the varieties of yoghurt on 28th day of storage, V3, V5 and V8 showed counts. Among them, V3 showed highest (5.0) coliform count followed by V5 and V8 (2.0 each). This might be due to contamination or lack of sanitation of utensils and working area.

Comparison between storage periods also reflected significant variability in coliform counts from 28th day. These results showed that yoghurt types made in combination with Bb 231 with YSC and with OEP reflected higher susceptibility in terms of higher coliform counts. Slow lactic acid production by starter cultures in accumulated media may favor the growth and production of gas by coliform bacteria, because they have short generation times and found favorable in combination with Bb 231. In most of voghurt samples coliform bacteria were absent due to pasteurization prior to its

incubation and some yoghurt samples contained less count of coliform

Similar results have been reported by Lopez et al., (1997) and Younus et al., (2002) who reported low number of yoghurt coliforms in samples. presence of coliforms in V3, V5 and V8 on day might be because contamination of milk or utensils or working and storage areas. El Bakri and El Zubeir, (2009) evaluated the quality of yoghurt market samples and found the total bacterial count and yeast and molds count were not significantly different between different manufacturers. of coliform count samples varied significantly (p<0.001)between manufacturers and with a significantly higher (p<0.05) coliform count in samples collected from traditional manufacturers than that collected from modern manufacturers.

Two factorial analysis was carried out with storage period, yoghurt varieties, storage period x yoghurt varieties and coliform count. Table 2 indicates the treatment interaction effect with coliforms at 0, 7, 14, 21 and 28 days of storage period. Coliform count showed significant interaction with parameters storage period, yoghurt varieties and storage period X yoghurt varieties. Hence not contamination, lack of sanitation utensils and working area but also the independent variables such as storage period due to its time, varieties of yoghurt due to its combination of different types of bacterial probiotic species and storage period verses yoghurt varieties do show the remarkable significant interaction with coliform count. Incubation time also show the effect on presence and increase of coliform count.

Omokoro and Telema (2014)studied the microbiology of three yoghurt samples and found that the bacterial, fungal and thermo tolerant coliform counts were highest in the Mary gold samples which had an acidic pH, the bacterial and fungal counts were lowest in

Green field samples with a neutral pH and the highest total coliform count. While the total coliform and thermo tolerant coliform counts were lowest in the home victory yoghurt samples. Rodrigues et al., (2010) analyzed 36 samples in Brazil for coliforms. Lactic acid bacteria, numeration and pH and observed in the samples with less than 15 days for 7.4 log CFU/g LAB counts and 4.1 pH values and they were lower when compared to samples with more than 16 days of commercial viability, but without significant differences.

CONCLUSION

Industrially produced some dairy products are absent of coliform bacteria due to pasteurization of pre-mix, additives, preservatives prior to its incubation and some yoghurt samples contains less count of coliform. In this study, effect of treatment interaction with coliform counts of yoghurt varieties which were developed with no preservatives or stabilizers but natural with probiotics and prebiotic combinations were studied. Coliform counts in yoghurt varieties were nil as desirable in the yoghurt on the day of preparation and continued same till 21 days. But, in all the varieties of yoghurt on 28th day of storage, V3, V5 and V8 showed coliform counts. The interaction of coliform count in these yoghurts was significantly related with storage period, yoghurt varieties and storage period X yoghurt varieties. Comparison between storage periods also reflected significant variability in coliform counts from 28th day. These results showed that yoghurt types made in combination with Bb 231 with YSC and with OEP reflected higher susceptibility in terms of higher coliform counts. Hence not only contamination, lack of sanitation of utensils and working area but also the independent variables such as storage period due to its time, varieties of yoghurt due to its combination of different types of bacterial probiotic species, storage period verses yoghurt varieties and incubation do show the remarkable significant interaction with coliform count.

REFERENCES

- AMPH, 1992. Compendium of methods for the microbiological examination of foods. American Public Health Association. Washington DC. USA.
- Champagne, C.P., Gardner, N.J. and Rov. 2005. Challenges in the addition of probiotic cultures to foods. Critical Reviews in Food Science and Nutrition, 45(1): 61-
- El Bakri, J. M. and El Zubeir, I. E. M. 2009. Chemical and microbiological evaluation of and plain fruit voghurt in Khartoum State. Sudan. Internaltional Journal of Dairy Science.4 (1): 1-7.
- Grunert, K. G., Bech-Larsen, T. Bredahl, L. 2000. Three issues in consumer quality perception and acceptance of dairy products. International Dairy Journal.10: 575-584.
- Lopez, M. C., Medina, L. M., Cordoba, M. G. and Jordano, R. Evaluation of the mirobiological quality of yoghurt ice cream. Alimentaria. 35: 39-45.
- Salinas, R.J. 1986. Hygiene quality of commercial yogurts. Alimentaria. 178: 27-30.
- Tamime, A.Y. and Robinson, R.K. 2007. Yoghurt: Science and Technology. Third Edn. Woodhead Publishing Limited, Cambridge, U.K. pp808.
- and Frank. Wang, J.J. J.F. 1981. Characterization psychrotrophic bacterial contamination in commercial buttermilk. Journal of Dairy Science. 64(11): 2154-2160.
- Omokoro, O. and Telema, B.B. 2014. Microorganisms associated with street vended yoghurt in mile 1 Diobu area of Port Harcourt,

Nigeria. *e-Journal of Science & Technology (e- JST.)* 5(9): 179-186.

Rodrigues, L. A., Ortolani, M. B. T. and Nero, L. A. 2010. Microbiological quality of yogurt commercialized in Vicosa, Minas Gerais, Brazil. African Journal of Microbiological Research. 4: 210-213.

Younus, S., Masud, T. and Aziz, T. 2002. Quality evaluation of market yoghurt/dahi. *Pakistan Journal* of Nutrition. 1: 226-230.

Table 1. Microbiological quality of coliform counts (10⁻⁷) in yoghurt

	Yoghurt type	Coliform count (10 ⁻⁷) CFU mL ⁻¹				
		Day-0	Day-7	Day-14	Day-21	Day-28
Control	C-YSC	0	0	0	0	0
Probiotic	V1-YSC + Lc 17	0	0	0	0	0
Batch	V2-YSC + Bb 231	0	0	0	0	0
FOS Batch	V3-YSC + FOS	0	0	0	0	5
	V4-YSC + Lc 17 + FOS	0	0	0	0	0
	V5-YSC + Bb 231 + FOS	0	0	0	0	2
OEP Batch	V6-YSC + OEP	0	0	0	0	0
	V7- $YSC + Lc 17 + OEP$	0	0	0	0	0
	V8-YSC + Bb 231 + OEP	0	0	0	0	2

Note: C = yoghurt starter culture (control); V1 = yoghurt starter culture + Lactobacillus casei17; V2 = yoghurt starter culture + Bifidobacterium bifidum 231; V3 = yoghurt starter culture + fructo- oligosaccharides; V4 = yoghurt starter culture + Lactobacillus casei17 + Fructo oligosaccharides; V5 = yoghurt starter culture + Bifidobacterium bifidum 231 + fructo oligosaccharides; V6 = yoghurt starter culture + onion extracted prebiotics; V7 = yoghurt starter culture + Lactobacillus casei17 + onion extracted prebiotics; V8 = yoghurt starter culture + Bifidobacterium bifidum 231 + onion extracted prebiotics.

Table 2. Effect of treatment interaction with coliform counts of yoghurt varieties during storage period

Details	Coliform
Parameters	
Storage Period	196.807***
Yoghurt varieties	166.007***
Storage period x Yoghurt varieties	166.007***

*** indicates significant interaction with parameters and storage period (p<0.05)

[MS received : March 29, 2017] [MS accepted : April 24, 2017]